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Fréchet Mean of a Euclidean Space

Given a sample x1, . . . , xn in a metric space (X , d), the intrinsic mean
(Fréchet Mean) is the set of the minimizers of the Fréchet function:

µ̂ ∈ arg min
m∈X

n∑
i=1

d(xi ,m)2

For a Euclidean space, the intrinsic mean is unique since
the Fréchet function f (m) =

∑
i ∥m − xi∥2 is strictly convex.

It is easy to see the intrinsic mean is equal to the sample mean x̄ .

In general, the less (or more negative) curvature, the less the number
of (local) minima of the Frechét function.

HOWEVER, this “good” behavior of the Frechét function is not
always welcome.
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Clustering

For a negatively curved space, Fréchet function f (m) :=
∑

i d(m, xi)
2

is not necessarily convex and its local minima (called the Karcher
means) can be used as the center of each cluster for clustering.
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⇝ Controlling the curvature of the data space should play an
important role in data analysis.
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Our strategy

Ordinary data analysis (e.g. classification, regression):
Data Xi (i = 1, . . . , n), Metric d
−→ Loss function f̂ ∈ F

(can be selected by cross validation, resampling)

−→ θ̂ = argmin
∑
i

f̂ (d(Xi , θ))

Our approach:
Data Xi (i = 1, . . . , n), Loss function f
−→ Metric d̂ ∈ D

(can be selected by cross validation, resampling)

−→ θ̂ = argmin
∑
i

f (d̂(Xi , θ))

How to set the family D of metrics?
=⇒ by focusing on their curvature

Our policy: keep the problem in geometry
as much as possible.
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Two steps of changing metrics

A geodesic metric space is a metric space s.t. the distance between
two points is equivalent to the shortest path length connecting them.

We can define a curvature called CAT(k) property for each geodesic
metric space.

We change the metric d of the original data space, to a geodesic
metric space dα, and next to a (usually non-geodesic) metric space
dα,β.

Metrics

Geodesic Metrics
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The α, β-metric and α, β, γ-mean

We propose a family of metrics:

dα,β(x , y) = gβ(dα(x , y))

and intrinsic means:

µ̂α,β,γ = arg min
m∈M

n∑
i=1

dα,β(xi ,m)γ

dα: a locally transformed geodesic metric (α ∈ R), defined later
gβ: a concave function corresponding to a specific kind of extrinsic
means (β ∈ (0,∞]), defined later
γ: for Lγ-loss (γ ≥ 1)
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Data analysis by α, β and γ

Euclidean dα,β

metrics d(x , y) = ∥x − y∥ dαβ(x , y) = gβ(dα(x , y))

intrinsic arg min
m∈Ed

∑
∥xi −m∥2 arg min

m∈M

∑
gβ(dα(xi ,m))γ

mean

Fréchet min
m∈Ed

1

n

∑
∥xi −m∥2 min

m∈M

1

n

∑
gβ(dα(xi ,m))γ

variance

Fréchet f (m) =
∑

∥xi −m∥2 fαβγ(m) =
∑

gβ(dα(xi ,m))γ

function
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Empirical Metric Graphs

We begin from computing empirical graphs, whose vertices are the
data points. For example,

1 Complete graph
2 Delaunay graph
3 k-NN graphs
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Delaunay empirical graph

We introduce a metric on the graph by the shortest path length:

d(x0, x1) := inf
γ∈Γ(x0,x1)

∑
eij∈γ

dij ,

where dij is the length of an edge eij .
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The α-Metric: Empirical Graph Case

α-metric for an empirical graph is defined by the shortest path length
with powered edge lengths:

dα(x0, x1) := inf
γ∈Γ(x0,x1)

∑
eij∈γ

d1−α
ij .

This can be seen as an empirical approximation of

d̃α(x0, x1) := inf
γ∈Γ(x0,x1)

∫ 1

0

f αp(z(t))d |γ(t)|.

where p is the dimension of the original data space.

Here we use a fact, under some regularity conditions, d
−1/p
ij is an

unbiased estimator of the local density and

(d
−1/p
ij )αpdij = d1−α

ij .

11 / 27



Some facts about the α-metric

Stochastic convergence of the empirical version dα to a
continuous version d̃α has been proved by Hwang, et al.(2016)
under some condition.

Geodesic subgraphs computed using α-metric are a special case
of “Pathfinder networks” used mainly in areas of Psychology.
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Ex: Geodesic subgraphs (starting from the complete graph)

A geodesic subgraph is computed by removing edges that cannot be
used in any geodesics.
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(a) α = 1
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(b) α = 0
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(c) α = −0.3
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(d) α = −1
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(f) α = −30
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α and CAT(k) property

In K. and Wynn (2020), we proved the following facts under some
conditions:

The edge set of a geodesic subgraph of an α-empirical graph
becomes smaller as α decreases.

Each geodesic subgraph becomes a tree (minimum spanning
tree) for sufficiently small α.

The curvature of a geodesic subgraph decreases as α decreases in
the sense of CAT(k) property and finally becomes CAT(0).
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Further metric transformation by β

We next introduce a parameter β to change a geodesic metric dα to a
(not necessarily geodesic) metric dα,β.

Metrics

Geodesic Metrics

16 / 27



β-Metric

Let (X , d) be a geodesic metric space.
For β > 0, transform the metric d as

dβ(x0, x1) = gβ(d(x0, x1))

where

gβ(z) =


sin(πz

2β
), for 0 ≤ z ≤ β,

1, for z > β.
0.2

0.4

0.6

0.8

1.0

β

For β = ∞, dβ = d .

dβ satisfies the triangle inequality and becomes a metric but not
necessarily a geodesic metric.

dβ-mean: µ̂β = arg min
m∈X

∑
i

gβ(d(xi ,m))2.
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β and clustering

f (m) =
∑

i gβ(|xi −m|)2 with various β:
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Can β-metric be explained by curvature?

dβ-mean: µ̂β = arg min
m∈X

∑
i

gβ(d(xi ,m))2.

Fréchet function on the dβ metric space behaves similar to positively
curved space.

But the curvature (i.e. CAT(k) property) can not be defined for non
geodesic metric spaces.

The dβ-mean can be redefined as an extrinsic mean when the data
space is embedded in a geodesic metric space called a “metric cone”.
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Metric Cone

X : a geodesic metric space
A metric cone X̃β with β > 0 is a (truncated) cone
X × [0, 1]/X × {0} with a metric

d̃β((x , s), (y , t)) =
√

t2 + s2 − 2ts cos(πmin(dX (x , y)/β, 1))

for any (x , s), (y , t) ∈ X̃β.
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The dβ-mean can be redefined as an extrinsic mean when the data
space is embedded in a “metric cone”.
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Extrinsic Mean in Metric Cone

Merits of embedding in a metric cone:

Curvature of embedding space can be tuned by β in the sense of
CAT(k) property (K. and Wynn(2020)) and Riemannian sense
(Takehara and K.(2021)).

The embedding space is only 1-dimensional higher than the
original data space.

Every geodesic metric space can be embedded. (Remark this is
not true for embedding in a Euclidean space, e.g. dα metric
spaces.)
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The α, β, γ-mean: Summary

We proposed a class of the intrinsic means:

µ̂α,β,γ = arg min
m∈M

∑
i

gβ(dα(xi ,m))γ

and corresponding Frechét variances:

Vα,β,γ = min
m∈M

1

n

∑
i

gβ(dα(xi ,m))γ.

The Frechét function can be used for clustering.
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Application: Clustering

Data: five kinds of data from UCI Machine Learning Repository (iris,
wine, ionosphere, breast cancer, yeast)
- The clustering error by k-means method decreases significantly by
selecting an adequate value.
- α ∈ {−5.0,−4.8, . . . , 0.8, 1} and
β ∈ {2−3, 2−2, . . . , 26,∞}.

k-means with dα,β Euclid

data set α̂ β̂ r ∗ r
(i) iris -4.4 0.125 0.0333 0.1067
(ii) wine 0.8 8 0.2753 0.2978
(iii) ionosphere -5.0 16 0.0798 0.2877
(iv) cancer 0.8 16 0.0914 0.1459
(v) yeast -0.6 2 0.4447 0.4515
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Application: Clustering

- The structure of the “optimal” geodesic graphs differs depending on
the data:
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Figure 1: The geodesic graph of each data set with an optimum value of α and β
for a randomly selected 100 sub-samples.
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Data：
Daily precipitation data of  9 regions in UK since 1931 
(UK Met office Hadley Centre observation data)
Target:
Check if the variance throughout each year changed
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Fig:  precipitation plot for 85 years  

Example: Rainfall Data (1)



Annual cycle structure of the 
average of the 85 years

The geodesic graph of 1986, 

Jan

• Precipitation data has some annual cyclic structure.
• The geodesic subgraph and the corresponding 
generalized variance are expected to reflect such 
geometric structure.  

Example: Rainfall Data (2)



Application: Rainfall Data

Time series of “variance” s20 := {min
i

∑
j

dα(xi , xj)
2}1/(1−α) are

plotted for α = 0 (red solid line), −0.22 (black dashed line) and −1
(blue solid line).
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This generalized “variance” is expected to detect change of another
type of volatility incorporating spacio-temporal geometrical structure
of the precipitation data.
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Example: Clustering of Populations on the earth
a person on the earth
： : Embedding into a Euclidean space

↓  Let     smaller     
Curvature of the embedding metric cone

becomes more positive
↓

Local minima of  increases
and are applicable to clustering

population density
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Original problem setting

True model (unknown): A finite directed acyclic graph G = (E ,V )
whose vertex corresponds to a data.

Input:

an undirected finite graph Ḡ = (Ē ,V ) without weights

a metric space M with a ”height” coordinate hM : M → R≥0

Output:

a “representation of hierarchy”: i.e. an embedding φ : V → M
s.t. hM(φ(V )) is consistent to the directions of E .

The problem does not make sense without further conditions.

Here we assume G is a rooted tree or approximately a rooted
tree.
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Example data and task

Social Networks
Input: Tweets of a buzz topic (w/o time stamps)
Output: Estimated time order (and time intervals) of the tweets

Chemical/Biological reactions
Input: List of substance pairs whose interactions have been
experimentally observed
Output: Estimated direction and timing of each interaction

E.g., the Poincaré embeddings are applied to extract hierarchical
structures from biological cell data (Kilmovskaia et al., 2020).
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Based method: Poincaré embedding

The Poincaré embedding (Nickel and Kiela, 2017) is a method
for learning hierarchical representations of symbolic data by
embedding them into a hyperbolic space (Poincaré ball).

The Poincaré embeddings were reported “outperforming
Euclidean embeddings significantly on data with latent
hierarchies, both in terms of representation capacity and in terms
of generalization ability.”
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Poincaré ball

The Poincaré embeddings embed data points(= vertices) to a
Poincaré ball.

The Poincaré ball is a ball Bd := {x ∈
Rd | ∥x∥ < 1} with a metric

gx :=

(
2

1− ∥x∥2
)2

gE .

The corresponding distance function be-
comes

d(u, v) = arccos
(
1 + 2 ∥u−v ∥2

(1−∥u∥2)(1−∥v ∥2)

)
.

The Poincaré ball is a hyperbolic space and
has a negative constant curvature.

M.C. Escher’s hyperbolic tiling

from Wikipedia
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Poincaré embedding 1

The Poincaré embeddings learn the embedding of an undirected
graph G by maximizing the following objective function:

L(φ) =
∑

(u,v)∈E

log
exp (−d(φ(u), φ(v)))∑

v ′∈N(u) exp (−d(φ(u), φ(v ′)))

where N(u) := {v ′ ∈ V |(u, v ′) /∈ E} and d denotes the distance
function on a Poincaré ball.
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Poincaré embedding 2

The maximization of the objective function is done by the stochastic
gradient descent on Riemannian manifolds (Riemannian SGD).

Euclidean SGD updates:

u ← u − η∇uL(u),

Riemannian SGD updates:

u ← expu(−η∇R
uL(u)).

Here η = ηt > 0 is a learning rate.
With the metric matrix of the embedding space (now, the Poincare
ball) as gu at u, the gradient on the Riemannian manifold ∇RuL(u) is
a scaled Euclidean gradient:

∇R
uL(u) = g−1

u ∇uL(u).
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Poincaré embedding 3

(a) Intermediate embedding after 20 epochs (b) Embedding after convergence

Figure 2: Two-dimensional Poincaré embeddings of transitive closure of the WORDNET mammals
subtree. Ground-truth is-a relations of the original WORDNET tree are indicated via blue edges. A
Poincaré embedding with d = 5 achieves mean rank 1.26 and MAP 0.927 on this subtree.

embeddings show a greatly improved performance while using an embedding that is smaller by an
order of magnitude. Furthermore, the results of Poincaré embeddings in the link prediction task are
very robust with regard to the embedding dimension. We attribute this result to the structural bias of
Poincaré embeddings, what could lead to reduced overfitting on this kind of data with a clear latent
hierarchy. In Figure 2 we show additionally a visualization of a two-dimensional Poincaré embedding.
For purpose of clarity, this embedding has been trained only on the mammals subtree of WORDNET.

4.2 Network Embeddings

Next, we evaluated the performance of Poincaré embeddings for link prediction in networks. Since
edges in complex networks can often be explained via latent hierarchies over their nodes [8], we are
interested in the benefits of Poincaré embeddings both in terms representation size and generalization
performance. We performed our experiments on four commonly used social networks, i.e, ASTROPH,
CONDMAT, GRQC, and HEPPH. These networks represent scientific collaborations such that there
exists an undirected edge between two persons if they co-authored a paper. For these networks, we
model the probability of an edge as proposed by Krioukov et al. [16] via the Fermi-Dirac distribution

P ((u, v) = 1 | Θ) =
1

e(d(u,v)−r)/t + 1
(7)

where r, t > 0 are hyperparameters. Here, r corresponds to the radius around each point u such that
points within this radius are likely to have an edge with u. The parameter t specifies the steepness of
the logistic function and influences both average clustering as well as the degree distribution [16].
We use the cross-entropy loss to learn the embeddings and sample negatives as in Section 4.1.

For evaluation, we split each dataset randomly into train, validation, and test set. The hyperparameters
r and t where tuned for each method on the validation set. Table 2 lists the MAP score of Poincaré
and Euclidean embeddings on the test set for the hyperparameters with the best validation score.
Additionally, we again list the reconstruction performance without missing data. Translational
embeddings are not applicable to these datasets as they consist of undirected edges. It can be
seen that Poincaré embeddings perform again very well on these datasets and – especially in the
low-dimensional regime – outperform Euclidean embeddings.

4.3 Lexical Entailment

An interesting aspect of Poincaré embeddings is that they allow us to make graded assertions about
hierarchical relationships as hierarchies are represented in a continuous space. We test this property
on HYPERLEX [32], which is a gold standard resource for evaluating how well semantic models

7

Learned embedding (cited from Nickel and Kiela(2017))
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Pros and Cons of Poincaré embedding

Pros

In experiments, embedding in a Poincaré ball works better than a
Euclidean Space.

The negative curvature of Poincaré balls suits the graph
embedding problem, especially for tree-like networks.

Cons

It requires much more computational costs compared to the
Euclidean embedding.

The model does not have much flexibility thus we cannot select a
model suitable to each graph structure.

Especially the curvature of the Poincare ball is fixed and cannot
be controlled.

The computed hierarchical relation is not invariant under
isometric transformations (e.g. the Möbius transformation).
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Our proposed method: Cone embedding 1

In Takehara and K. (2023), we proposed the Cone embedding, a
method embedding a graph into a metric cone.

We first use another embedding algorithm to embed a graph into a
Riemannian space (called “original embedding space”), and next
optimize the height parameters.
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Our proposed method: Cone embedding 2

The distance function on a metric cone is

d̄β((x , s), (y , t)) := β
√

t2 + s2 − 2ts cos (πmin (dZ (x , y)/β, 1)).

The corresponding metric matrix at non-apex points is

ḡ(x , r) =

(
r 2π2g(x) 0

0 β2

)
.

Thus we use the Riemannian SGD updates with this metric:

u ← expu(−η∇R
uL(u)).

∇R
uL(u) = ḡ−1

u ∇uL(u).
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Uniformly variable curvatures

The Ricci curvatures R̃αγ and the scalar curvature R̃ at (x , s) become

R̃αγ = Rαγ − π2(n − 1)β−2ḡαγ,

R̃α0 = R̃0γ = R̃00 = 0, R̃ = {π−2R − n(n − 1)β−2}s−2

The scalar curvature and the Ricci curvatures become more
negative than (a constant times of) the corresponding original
curvatures for β <∞ and n ≥ 2.

β changes the curvatures uniformly thus we can control the
curvatures by tuning β.

The closer to the apex, i.e. the smaller the value of s, the greater
the change of the scalar curvature.

When the original space is a geodesic metric space, similar results in
the sense of CAT(k) property were proved in K. and Wynn(2020).
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Identifiablity 1

The Cone embedding has identifiability of hierarchical values from the
learnt metrics that the Poincaré embedding does not satisfy.

Assume the original embedding space Z is a Riemannian manifold,
and let X be the metric cone of Z with a parameter β > 0.

We assume that each data point zi ∈ Z (i = 1, . . . , n) has its specific
“height” ti ∈ [0, 1] in the metric cone X .

Our proposed method embeds data points into a metric cone based
on the estimated distances d̃β(xi , xj) (i , j = 1, . . . , n) and tries to
compute the heights t1, . . . , tn as a measure of the hierarchy level.

However, it is not evident if these heights are identifiable only from
the information of the original data points in Z and the distances
d̃β(xi , xj) (i , j = 1, . . . , n) in the metric cone.
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Identifiablity 2

Theorem 1 (Theorem 1 of Takehara and K. (2023))

(a) Let n ≥ 3 and assume that z1, . . . , zn are not all aligned on a
geodesic in Z . Then, the heights t1, . . . , tn are “identifiable” up
to at most four candidates.

(b) Let n ≥ 4 and assume z1, . . . , zn and t1, . . . , tn take “general”
positions and heights, respectively. Then, the heights t1, . . . , tn
are identifiable uniquely.

(c) If dZ (zi , zj) ≥ β/2 for all i , j = 1, . . . , n, i ̸= j , then the heights
t1, . . . , tn are identifiable uniquely.

See Takehara and K. (2023) for the definition of “ientifiable” and
“general”.
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Identifiablity 3

Comments on the proof)

For n = 3, the problem becomes an elementary geometrical
problem.

We used algebraic approach and evaluate the number of solutions
of a quadratic polynomial system using the Gröbner basis.

For n ≥ 4, the system becomes overdetermined.

O

x3

x2

x1

z1z2
z3

t1

t3

t2
θ3

θ2

θ1

a1

a2

a3

t22 + t23 − 2t2t3 cos θ1 = a21,

t23 + t21 − 2t3t1 cos θ2 = a22,

t21 + t22 − 2t1t2 cos θ3 = a23.
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Experiments

We evaluate the proposed method in two experiments:

E1 embedding graphs (coauthors’ network of academic papers),

E2 embedding taxonomies (WordNet).

For every vertex u, we rank {d̃β(u, v) | v ∈ V } and an index
MR(mean ranking) is computed as the difference from the ranking of
u and the mean ranking of vs adjacent to u.
Mean average precisions(MAP) are also compared1.

In E2, the following score is used instead of d̃β(u, v):

score(is-a((u, s), (v , t))) = −(1 + α(s − t))d(u, v)

where α = 103.

1Average precision is similar to AUC (AUROC) but using a plot of precision (not
specificity) as a function of sensibility. MAP is the mean of APs over u.
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Experimental results 1

Table 1: Embedding accuracy for WordNet

dimension
10 20 50 100

Euclidean MR 1471.70 232.88 2.51 1.82
MAP 0.070 0.122 0.838 0.899

Poincare MR 19.94 19.62 19.47 19.36
MAP 0.528 0.534 0.537 0.538

Our Model MR 1401.28 209.11 2.30 1.79
(Metric Cone) MAP 0.052 0.126 0.853 0.902

16 / 20



Experimental results 2

Figure: Visualization of WordNet embedding using metric cone
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Experimental results 3

Table 2: Results of GrQc embedding into low-dimensional space

Model eval. 2 3 4 5 6 7 8 9
Euclid. MR 88.99 37.17 17.15 9.42 5.78 4.27 3.42 3.18

MAP 0.375 0.488 0.600 0.719 0.842 0.929 0.983 0.998
Metric MR 72.35 26.39 14.50 8.65 5.50 4.16 3.40 3.18
Cone MAP 0.450 0.551 0.614 0.726 0.851 0.935 0.986 0.998
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Figure 1: Changes in the distribution of the heights of data points
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Summary: Merits of cone embeddings

We provide an indicator of hierarchical information that is both
geometrically and intuitively natural to interpret.

The model can inherit the merits of the original embedding
method. Thus it can suit each graph structure more flexibly.

Computation for cone embeddings is light since it optimizes only
one coordinate variable per each data point.

The curvatures of the embedding space can be controlled by
parameter β.

The hierarchical relation is determined uniquely by the distances
between the data points under mild conditions.
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